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Abstract

Equilibrium molecular dynamics (EMD) and non-equilibrium molecular dynamics (NEMD) simulations are carried out on n-hexane/n-

hexadecane binary mixtures. Using EMD, dynamic properties such as the viscosity, self-diffusivity, and rotational relaxation, as well as

static structural properties are computed at different compositions. Upon mixing, a slowing down of the dynamics of the smaller species is

observed, while the dynamics of the long species increases. The ¯uids exhibit non-ideal mixing due to a non-random distribution of the

methylene units of the chain molecules. By examining the short range structure of the ¯uid, a local clustering of the smaller chains is

observed. NEMD is used to simulate shear Couette ¯ow and compute the shear viscosity of the ¯uid, particularly in the non-linear

viscoelastic regime. Phenomena such as shear thinning, normal stress effects and molecular alignment are observed. Two shear thinning

transitions are observed for the case of mixtures. It is shown that this is a result of the two species having differing relaxation times and

varying tendencies to align with the shear ¯ow. The longer chains shear thin ®rst and align more readily than the shorter ones. The effect

this has on the overall properties and shear-thinning spectrum, and its relation to the dynamics of each species, is examined. # 1999

Elsevier Science S.A. All rights reserved.
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1. Introduction

The study of the rheology, viscoelasticity and transport

properties of alkanes and their mixtures is of considerable

practical interest. Alkanes are the main constituent of lubri-

cant base stocks, which are a complex mixture of mostly

branched and cyclic saturated hydrocarbons with sizes of

16±40 carbon atoms [1]. Molecules in this size range are

generally too small to be treated with theories for polymeric

materials, but are too large for their properties to be ade-

quately described with classic liquid theories. As a result, it

is dif®cult to predict the dependence of the ¯uid properties

on the composition and structure of the individual species.

Such knowledge would be useful as a means for `̀ design-

ing'' new or improved lubricants. Lacking this kind of

predictive capability, lubricant `̀ design'' is currently more

of an art than a science, and relies heavily upon the experi-

ence and insight of formulation chemists as well as on costly

trial-and-error experimentation. Since the number of choices

available to the lubricant formulator is staggering1, a purely

combinatorial approach toward improved formulations is

inadequate.

To address this shortcoming, methods are needed that can

relate the molecular-level details of lubricant molecules to

the resulting macroscopic performance characteristics. This

will enable predictive models to be developed and will

provide guidance in the development of new compounds

and blends. A number of tools have been developed recently

with this capability, including the surface forces apparatus

(SFA) [2±5], quartz crystal microbalance [6], and force

microscopy techniques [7]. In addition, molecular simula-

tion methods employing Monte-Carlo (MC) and molecular

dynamics (MD) have been used as predictive tools to

advance our understanding of friction and lubrication [8±

43]. The literature in the general area of `̀ molecular tribol-

ogy'' is extensive. Some of the issues examined include
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1For example, it has been estimated that a paraffinic molecule

containing 25 carbon and 52 hydrogen atoms can have approximately

37,000,000 different molecular rearrangements. When one considers the

naphthenic and aromatic species that also have 25 carbon atoms, it is clear

that the number of choices, even when one is restricted to 25 carbon atoms,

is immense.
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rheology and dynamics of bulk ¯uids [23±43]; density and

solvation force oscillations [44,45]; preferential adsorption

of long chains [5,46,47] ordering of molecules at surfaces

[22,48,49]; the tendency of con®ned species to take on

solid±like character [50,51] and stick±slip behavior and

its molecular origins [7,21]. These studies have helped

elucidate many of the processes involved in lubrication

and have laid a sound foundation upon which to build.

However, there is still much work that needs to be done in

this area before we can develop a set of `̀ molecular design

principles'' upon which formulators can draw. For example,

while the rheology and dynamics of pure ¯uids have been

studied extensively by MD over the past decade, very little

simulation work has been done on mixtures or the role

additives play in determining lubricant properties. Early

work on mixture behavior was con®ned mainly to simple

molecules modeled as Lennard-Jones spheres [38±41].

Recently, the shear viscosity of mixtures of polar molecules

such as methanol and water have been studied using MD

[42]. There are few simulation studies involving mixtures of

more complex molecules such as hydrocarbons. Recently,

Khare et al. [33] performed NEMD simulations of a mixture

of n-C36/n-C16 as a ®rst step in this direction, but did not

examine in detail the viscoelastic properties of the blend.

Some work on the dynamics of polymer blends with MD has

been performed by Kopf et al. [43], using a bead and spring

model of a blend of chains of equal lengths but different

bead masses.

In this work, equilibrium molecular dynamics (EMD) and

non-equilibrium molecular dynamics (NEMD) simulations

are used to examine the properties of a binary hydrocarbon

blend. A mixture of n-hexane and n-hexadecane was chosen

as a simple model of a blend involving a short and long

molecule. These molecules are small enough such that all

static and dynamic properties can be computed without

excessive computational cost. The molecules are large

enough, however, to exhibit behavior typical of real lubri-

cants. In addition, the molecules are different enough in size

to have signi®cantly different relaxation times as well as

non-ideal mixing behavior. Details of the simulation meth-

odology are given in the next section, followed by a dis-

cussion of the results and then a brief summary of the major

conclusions. Additional algorithmic details are given in

Appendix A.

2. Simulation methodology

2.1. Algorithms

The procedures whereby EMD and NEMD are used to

compute static and dynamic properties of ¯uids have been

treated extensively in several excellent references [52±54].

Here, we summarize some of the essential features of our

simulations and demonstrate how important quantities are

computed.

The EMD simulations were carried out in the canonical

ensemble by applying a NoseÂ±Hoover thermostat [55] to the

classical equations of motion. The equations used in this

work are given in Appendix A. The force on each particle,

Fi, is given by:

Fi � ÿ @Vi

@ri

; (1)

where Vi is the potential energy which describes the

interactions between particle i and the rest of the particles

in the system. The equations of motion are supplemented

with periodic boundary conditions to remove surface effects

[52].

The shear viscosity can be obtained from a Green±Kubo

expression [52]:

� � V

kBT

Z1
0

hPxz�0�Pxz�t�i dt; (2)

where � is the shear viscosity, V the volume, kB the

Boltzmann's constant, T temperature, Pxz the xz component

of the pressure tensor P, and t is the time. hPxz(0)Pxz(t)i is

the autocorrelation function of the xz component of the

pressure tensor and the brackets h. . .i denote ensemble

averaging. The pressure tensor can be computed in two

ways. The ®rst is through the `̀ atomic'' virial theorem:

PV �
X

i

pipi

mi

�
X

i

riFi; (3)

where ri and pi are the position and momenta vectors of

particle i, mi the mass, and the summations are over all

atoms. An alternative form is the `̀ molecular'' virial where

the summations are over all molecules, ri and pi are the

positions and momenta of the centers of mass of molecule i,

and Fi the total force on molecule i. Both methods were

used, but only molecular virial values are reported here.

Pressures computed using the atomic virial tended to be

systematically lower than the molecular pressure by about

0.4 MPa. A similar result was obtained by Mondello and

Grest [23,37]. Viscosities computed using the two different

virial formulations were identical within the statistical

accuracy of the simulations.

To increase the accuracy in the calculation of the shear

viscosity from the Green±Kubo relation, all different off-

diagonal components of the pressure tensor can be used,

since the system is isotropic at equilibrium and the xz, xy, yz

components are equivalent. In addition, Daivis and Evans

[28] have shown that the accuracy in the computation of

shear viscosity from EMD can be further improved by using

all six components of the stress tensor. The shear viscosity

can then be calculated from the integral

� � V

10kBT

Z1
0

hPos�0� : Pos�t�i dt; (4)
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where Pos is the symmetrized traceless pressure tensor with

components Pos
�� given by:

Pos
�� �

P�� � P��

2
ÿ ��� 1

3

X



P



 !
: (5)

The operator : denotes the double product between tensors

[56]. Eq. (4) was used in all our EMD calculations.

In NEMD, an external ®eld (perturbation) is introduced

into the equations of motion and the response of the system

at the non-equilibrium steady state is monitored [53]. Many

NEMD algorithms have been proposed over the last 25 years

[52,57] where usually a ®ctitious ®eld is incorporated into

the equations of motion. The method used in this work is the

Sllod algorithm [53]. This algorithm has been used success-

fully by many authors [24±34,38±40,42,54] for computing

viscosities of ¯uids. It has also been shown to be exact for

arbitrarily large shear rates and is suitable for the study of

the non-Newtonian behavior of ¯uids. The modi®ed equa-

tions of motion for the Sllod algorithm are:

dri

dt
� pi

mi

� ri � ru; (6)

dpi

dt
� Fi ÿ pi � ru: (7)

For planar Couette ¯ow, ri � ru � � _
riz; 0; 0� and

pi � ru � � _
piz; 0; 0�, where z is the direction normal to

the ¯ow and x is the direction of ¯ow. The shear rate is given

by _
 � dux=dz. The momenta pi are measured with respect

to the streaming velocity and are called peculiar momenta.

The Sllod algorithm is combined with the Lees±Edwards

`̀ sliding brick'' periodic boundary conditions [58], where

the periodic images above and below the central simulation

box are moved in opposite directions. To use NEMD,

several simulations are performed at varying shear rates,

and the shear viscosity is found from the constitutive

equation:

�� _
� � ÿhPxzi
_


: (8)

The zero-shear Newtonian viscosity can be obtained from

an extrapolation of the viscosity at _
 ! 0. The NEMD and

EMD methods are formally equivalent, so that the extra-

polated viscosity should agree with the equilibrium viscos-

ity obtained from the Green±Kubo expression (Eq. (4)).

Application of the velocity ®eld into the NEMD equa-

tions of motion causes the system to heat up. As with the

EMD simulations, a NoseÂ±Hoover thermostat [55] was

employed to maintain a constant temperature. This results

in extra terms in the NEMD equations of motion, which are

not shown in Eq. (5) and (6) for simplicity. The detailed

equations used for constant temperature simulations are

presented in Appendix A. We used the slightly modi®ed

equations of motion proposed by Martyna et al. [59], which

can be shown to give the canonical distribution in an ergodic

system.

One of the main problems with any MD technique is that

long simulation times are typically required to examine

complex molecule behavior. This problem is exacerbated by

the large separation of timescales between relatively fast

vibrational modes of bond lengths and angles and longer

timescales that govern overall molecular motion. To reduce

the severity of this problem, a multiple time step method has

been employed for integrating the equations of motion. We

used the rRESPA (reversible reference system propagator

algorithm) method ®rst proposed by Tuckerman et al. [60].

The method is based on a separation of the Liouville

operator into the different modes that prescribe the motion

of the atoms. With this separation, the fast vibrational forces

are integrated with a small time step dt. The rest of the forces

which prescribe the slow motion of the atoms are integrated

with a larger time step �t�ndt, where n is an integer.

Consequently, the number of computationally expensive

slow force evaluations are reduced for a given over all

simulation time. Using this method, we were able to speed

up the calculations by 5±10 times over a conventional

algorithm. Details of the separation scheme used in this

work are presented in Appendix B.

2.2. Forcefield

The n-alkanes were represented using a united atom (UA)

model in which the hydrogen atoms are incorporated within

the CH3 and CH2 groups. This results in a model with fewer

interaction sites and substantial computational cost savings.

The force®eld used in this work is a version of the TraPPE

(Transferable Potentials for Phase Equilibria) model pro-

posed by Siepmann et al. [61,62]. This force®eld has been

optimized for phase behavior prediction and has been shown

to reproduce accurately the liquid-vapor coexistence curve

and predict the critical properties for several linear and

branched alkanes. The potential model is an extension of the

older Siepmann, Karaborni and Smit (SKS) model [63±65]

for linear alkanes. The potential energy functions and the

parameters used in this model are presented in Table 1. The

potential energy model accounts for bond stretching, bond

bending, torsional rotation and van der Waals non-bonded

interactions. The non-bonded intermolecular interactions

are modeled with a pairwise Lennard-Jones (LJ) potential.

Intramolecular non-bonded interactions for sites separated

by more than three bonds are also described by a LJ

potential. For interactions between different groups a geo-

metric combining rule is used, so that �ij�(�ii�jj)
1/2 and

�ij�(�ii�jj)
1/2. Bond-stretching and bond angle bending

potentials are described with harmonic functions. A com-

monly used dihedral angle potential function proposed by

Jorgensen et al. [66] was also used.

2.3. Other simulation details

EMD and NEMD simulations of the mixture were per-

formed at six and four different compositions, respectively.
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A small time step of dt�1fs was used to integrate the fast

modes and a large time step of �t�5fs was used for the slow

modes. These time step sizes were chosen through a trial-

and-error optimization procedure. Smaller time steps

yielded essentially the same results. For the NEMD runs,

the same size time steps were used for all different shear

rates. No signi®cant differences in the calculated properties

were observed by using smaller time steps, even for the high

shear rate runs.

The LJ potential was truncated at 9.825 AÊ , which is 2.5

times the � value of the CH2 groups. Long-range corrections

were included in the calculation of the intermolecular

energy and pressure. The values of the long-range correc-

tions varied fromÿ2.5 toÿ7.138 kJ/mol for the energy, and

from ÿ38.0 to ÿ48.6 MPa for the pressure, depending on

the composition of the mixture. Larger cutoff distances were

also tested, but no appreciable differences in the results were

observed. A neighbor list was also used to speed the

calculations [52]. The EMD run lengths were varied from

2 to 23 ns, depending on the composition of the mixture.

The NEMD runs varied from 150 ps to 5.6 ns depending on

the shear rate and the system studied.

3. Results and discussion

3.1. Dynamic properties from EMD

The EMD simulations were performed in the canonical

ensemble at experimental densities. Six different composi-

tions of n-hexane and n-hexadecane were examined at

ambient temperature. These conditions were chosen

because they are relevant for lubrication applications and

because experimental data were available at this state

point. The simulated state points along with the cal-

culated pressures are shown in Table 2. Viscosity, self-

diffusivity and the rotational relaxation of the chains

have been computed in order to study the dynamics of

the alkane blend at different compositions. The calculated

values are presented in Tables 3 and 4. Each of the proper-

ties studied is discussed in detail in the following subsec-

tions.

3.1.1. Shear viscosity

In Table 3, the shear viscosity values computed from

EMD simulations are presented for the different systems

studied. The values reported are the plateau values of the

integral in Eq. (4) using the molecular virial with data

collected every four large time steps (20 fs). The simula-

tions were run for long times to minimize tail effects in the

computation of the correlation functions. The error of the

correlation function at long times trun was estimated as

[23,52]:

� � 2�

trun

� �1=2

; (9)

where � is the rotational relaxation time for the longer

hydrocarbon in the mixture. Our runs were carried out for

Table 1

Potential energy functions and parameters for the TraPPE united atom model used in this work

Potential energy functions Potential energy parameters

Non-bonded VLJ�4eij [(�ij / rij)
12ÿ(�ij / rij)

6] �CH3
� 3:77 AÊ "CH3

=kB � 98:1 K

�CH2
� 3:93 AÊ "CH2

=kB � 47:0 K

Bond stretching Vb�(1/2)kb(rÿr0)2 kb/kB�452 900 K AÊ ÿ2

r0�1.54 AÊ

Bond-angle bending Vq�(1/2)kq(�ÿ�0)2 kq/kB�62 500 K/rad2

�0�1148
Torsion V��a0�a1(1�cos �) a0/kB�0.0 K

�a2(1ÿcos 2�) a1/kB�355.03 K

�a3(1�cos 3�) a2/kB�ÿ68.19 K

a3/kB�791.32 K

Table 2

Simulated mixtures at different hexadecane mole fractions (x16)

x16 � (g/cm3) N16 N6 PEMD (MPa)

0.0 0.655 0 200 ÿ3.9�0.8

0.2 0.698 40 160 ÿ7.4�0.5

0.4 0.726 60 90 ÿ11.0�0.5

0.6 0.745 60 40 ÿ11.2�0.4

0.8 0.759 80 20 ÿ13.7�0.5

1.0 0.770 100 0 ÿ18.1�0.4

The densities reported are the experimental densities [67,68] at ambient

conditions (298 K and 0.1 MPa) which have been used as an input for the

simulations. N16 and N6 stand for the number of hexadecane and hexane

molecules used, respectively. PEMD is the pressure calculated from EMD

runs.

Table 3

Shear viscosity (�) results calculated from EMD simulations

x16 � (mPa s) trun (ns)

0.0 0.204�0.017 2

0.2 0.401�0.053 10

0.4 0.466�0.064 12.5

0.6 0.663�0.091 16

0.8 0.999�0.136 20

1.0 1.129�0.159 23

The uncertainties in the simulated values have been obtained using Eq. (9)

(see text).
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times of approximately 100±120 times � , which according

to Eq. (9) yields a statistical uncertainty of about 15%.

When carrying out the integral in Eq. (4), it is desirable

to take the plateau value at the earliest possible time to

minimize statistical error, and at later times to reduce

systematic errors [23]. It was found that the Green±Kubo

integral reached its plateau at about 1� . The viscosity values

reported are an average of the plateau values that were

reached at times of between 1� and 2� .

In Fig. 1, shear viscosities computed from EMD simula-

tions are plotted as a function of n-hexadecane mole fraction

in the mixture. In the same plot, experimental values from

the work of Aucejo et al. [67] are shown for comparison. It is

clear that the TraPPE model under predicts the viscosity.

The deviation of the simulated values from the experimental

ones varies from 30% for pure n-C6 to 60% for pure n-C16,

indicating that the force®eld does not perform as well for the

longer alkanes. We note that the TraPPE model was opti-

mized for linear alkanes up to n-C12 at conditions near the

critical point. These conditions are very different from those

of this study. In addition, at T�298 K n-C16 is only a few

degrees above its melting point. Apparently, ambient con-

ditions are a dif®cult state point for this particular force®eld.

We also note that the TraPPE force®eld was developed for

computing thermodynamic properties. The present results

indicate that further work is needed in developing force

®elds that are able to predict both thermodynamic and

transport properties over a range of conditions.

The computed viscosity for hexadecane using the SKS

model [63±65] is also shown in Fig. 1. The SKS value is

from simulations performed by Mondello and Grest [23].

The predicted value is slightly higher than the value com-

puted using the TraPPE model, but still shows a large

deviation from the experimental value.

Although the computed viscosities do not match exactly

the experimental values, the simulations are still able to

capture general trends. Moreover, important physical

insight into the behavior of the mixture can be obtained

from the simulations. As expected, the viscosity of the

mixture increases with increasing concentration of the

longer molecule. The solid lines in Fig. 1 ®ts according

to the following semi-empirical [56]:

ln � � x1 ln �1 � x2 ln �2 � 2x1x2G12: (10)

The adjustable interaction parameter G12 is 0.507 for the

experiment and 0.469 for the simulations, indicating a

positive deviation from ideal mixing for viscosity for both

simulation and experiment. This is mainly due to the

negative experimental excess molar volume of mixing

[67,68] (i.e. higher density). Recall that the simulations

were run in the canonical ensemble at experimental den-

sities, for which there is a negative excess molar volume of

mixing �~V
E
. A negative �~V

E
means that there is a degree

of compatibility between the two alkanes, which is due to

the difference in the size of the two chains. The short chains

are able to locate in the interstices between the longer

chains, giving rise to a higher total density than would be

predicted based on pure component properties. This nega-

tive excess volume of mixing gives rise to a positive

deviation from ideal mixing for viscosity.

Ideally, one would study excess properties using simula-

tions in the isothermal±isobaric (NPT) ensemble rather than

the canonical (NVT) ensemble. We have in fact performed a

number of NPT simulations, but prefer to examine viscosity

Table 4

Self-diffusivity (D) and rotational relaxation times (�) computed from

EMD simulations

x16 D (10ÿ9 m2/s) � (ps)

Hexadecane Hexane Hexadecane Hexane

0.0 ± 5.09�0.03 ± 6.61�0.04

0.2 1.99�0.06 3.97�0.02 88.8�2.6 8.55�0.04

0.4 1.44�0.04 3.10�0.02 116.7�3.3 10.37�0.07

0.6 1.10�0.03 2.61�0.03 151.2�4.8 12.11�0.13

0.8 0.88�0.03 1.83�0.03 186.5�5.7 14.74�0.25

1.0 0.78�0.02 ± 228.3�6.9 ±

1.0a 0.576�0.008 ± 300�15 ±

0.0b ± 4.7 ± ±

1.0c 0.379 ± ± ±

The uncertainties in the simulations are '(2� /Ntrun)1/2 [52]. This is Eq. (9)

with the extra factor N1/2 in the denominator (N is the number of

molecules for each species), because D and � are single chain properties.

The results have been computed from 5 ns runs, except for pure hexane

where trun is 2 ns.
a SKS value from simulations of pure n-hexadecane reported in [23].
b Experimental value for pure n-hexane. It has been obtained from an

extrapolation using experimental self-diffusivity values of higher n-

alkanes from the literature [69].
c Experimental value for pure n-hexadecane from [70].

Fig. 1. Comparison of the EMD shear viscosity values with experimental

values from [67], and the value from simulations using the SKS model

from [23]. The solid lines are fits using Eq. (10).
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by keeping density constant and allowing the pressure to

¯uctuate. The reason for this is that liquid properties are

very strong functions of density but do not vary as strongly

with pressure. This is especially true of the viscosity. As can

be seen from Table 2, the force ®eld does not adequately

capture the pressure and density of the ¯uid simultaneously

at the state point of interest, so we decided to ®x the quantity

that has the largest impact on the properties of interest (i.e.

the density) at its experimental value.

3.1.2. Self-diffusivity

Computed self-diffusivities for each species in the binary

mixture are shown in Table 4. These results were obtained

by calculating the long time slope of the mean square

displacement of the center of mass of each chain and

applying the Einstein equation for diffusion [52]. The

diffusion coef®cients of both chains drop as the concentra-

tion of the longer chain increases. In the same table the

experimental diffusion coef®cients [69,70] for the pure

compounds are shown, as well as the SKS value for the

self-diffusivity of hexadecane from simulations done by

Mondello and Grest [23] at the same conditions. Consistent

with the viscosity calculations, the predicted values using

the TraPPE model are somewhat higher than the experi-

mental values. The TraPPE force®eld enables the chains to

move more rapidly than they do in reality. However, the

computed diffusivities are much closer to the experimental

values than was the case for the viscosities.

3.1.3. Rotational diffusion

Another way to examine the dynamics of the chains, and

how mixing affects each individual species in the blend, is to

study rotational diffusion. The reorientational or rotational

relaxation of the chain molecules is computed from the auto

correlation function he1(0)�e1(t)i of the unit vector e1 of the

longest axis of the molecules. For linear alkanes the longest

axis can be assumed to be the end to end vector of the

molecule. In Fig. 2 EMD results for the correlation func-

tions are shown. The solid lines are from simulations of pure

hexadecane and pure hexane. The dashed lines are the

reorientational correlation functions for each species in a

binary n-C6/n-C16 mixture with x16�0.6. It is clear that upon

mixing, the rotational dynamics of the long chains speed up,

whereas the dynamics of the short chains slow down. The

longer chains when dissolved in the matrix of short chains

are able to move and rotate easier, resulting in faster

relaxation rates. The short chains act as a plasticizer or

solvent for the long chains. The exact opposite effect occurs

for the short hexane chains; the presence of the large, slowly

moving chains inhibits the rotational motion of the smaller

chains. This behavior is observed for all different composi-

tions simulated, as can be seen from Fig. 3, where the

rotational relaxation times � for each species in the mixture

are plotted as a function of x16. The relaxation times were

computed by ®tting the auto correlation functions to a series

of exponentials:

he1�0� � e1�t�i �
X

i

ai exp�ÿt=�i�: (11)

In our case only one exponential exp(ÿt/�) was enough to

®t the correlation function curves, and the values of � from

Fig. 2. End-to-end unit vector autocorrelation functions. The solid lines

are the correlation functions for pure n-hexadecane and pure n-hexane,

obtained from two different simulations. The dashed lines are the

correlation functions for each species, obtained from a simulation of a

mixture with x16�0.6. The arrows indicate the change in the relaxation

rate upon mixing.

Fig. 3. Rotational relaxation times (�) for each species in the mixture, as a

function of the n-hexadecane mole fraction (x16). The filled triangle shows

the value of the relaxation time for pure n-hexadecane computed from

simulations of [23] using the SKS potential model.
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the ®t are the ones reported in Table 4 and Fig. 3. The

adequacy of a single exponential for ®tting the relaxation

spectra of short alkanes has also been reported by other

groups [23,31,37]. We also tried ®tting the spectra to the

Kohlraush±Williams±Watt (KWW) equation [36]:

he1�0� � e1�t�i � exp��ÿt=����: (12)

The KWW equation accounts for the observation that the

relaxation of complex systems follows a time-dependent

rate. The � values from the ®ts were found to be always very

close to unity (not shown), indicating that deviation from a

single exponential mode is negligible. The values of �
reported in Table 4 were also compared with values of �
calculated from directly integrating the correlation func-

tions. No signi®cant differences were found between these

two approaches. The rotational relaxation time obtained

with the SKS model is shown as a ®lled triangle in Fig. 3. As

was the case for the viscosity and self-diffusivity, the SKS

force®eld exhibits slightly slower dynamics than the

TraPPE model.

3.2. Static properties from EMD

3.2.1. Equilibrium fluid structure of pure components

The bulk properties of ¯uids are strongly in¯uenced by

local structure. To examine this, the inter-molecular pair

correlation functions (PCF) g(r) were computed to obtain

insight into how the local molecular structure of the ¯uid

impacts dynamic properties.

In Fig. 4 the PCF from EMD simulations of pure n-

hexadecane and pure n-hexane are shown, for the different

correlations between methyl±methyl, methyl±methylene

and methylene±methylene groups. Insight into the local

ordering of the different species can be gained by close

examination of these curves. The initial CH3±CH3 peaks for

both pure species are more intense than the other peaks, and

they occur at shorter distances. The next highest peak is for

the methyl±methylene groups, which is shifted to slightly

larger distances. The smallest and most shifted peak is for

methylene±methylene units. Fig. 4 shows that the ends of

the chains are able to come closer to each other than the

middle groups of the chains, which results in end groups

contributing to better packing and more order. It is tempting

to attribute this behavior to the fact that for the TraPPE

force®eld, "CH3
> "CH2

and �CH3
< �CH2

(see Table 1). This

implies that the methyl groups are relatively `̀ small'' and

`̀ attractive'' compared to the methylene groups, and so

exhibit more ef®cient packing. The fact that the model

has a smaller Lennard-Jones size parameter for the CH3

group than the CH2 group is somewhat counter intuitive.

However, this effect was also observed in simulations using

the OPLS [66] force®eld and the SKS [63±65] force®eld in

which �CH3
� �CH2

[62]. We therefore conclude that the

trends seen in Fig. 4 are mostly due to steric effects resulting

from chain connectivity, and are not artifacts of the potential

size parameters. For linear chains, it is easier for chain ends

to come close together than for groups in the middle of the

chain, where chain conformations are strongly governed by

bond angles and torsion angles. The middle regions of the

chains are effectively `̀ screened'' by the rest of the chain. It

is easier for end groups to penetrate this steric barrier, which

explains why the methyl±methylene peak is next highest.

3.2.2. Local structure of the blend

In Fig. 5(a) the PCFs for the CH2 groups of the different

species in the blend are shown. This plot is for a blend at

x16�0.4, which is in the range of concentrations where the

Fig. 4. Pair correlation functions between the different groups as a

function of distance: (a) pure n-hexadecane; (b) pure n-hexane.
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maximum non-idealities are observed. It can be seen that

there is non-random mixing between the inner sites of the

different species. All three peak at almost the same separa-

tion distances. For all the compositions studied, however,

the C6±C6 peak is higher. This means that there is a local

clustering between the CH2 groups of the short hexane

chains in the mixture. On the other hand, the C16±C16

PCF shows a lower peak than the C16±C6 curve, indicating

a preferential C16±C6 structure. These results are mainly due

to the difference in the sizes of the two chain molecules. The

shorter hexane chains show a better packing and a stronger

structure than the hexadecane chains. The hexane chains can

be thought of as solvating the longer chains, while the

bulkier C16 chains more effectively screen their inner

groups.

On the other hand, a plot of the PCF for the CH3 groups

between the different species (Fig. 5(b)), shows random

mixing in the ®rst coordination shell, since all the curves

coincide. Therefore, the end groups in linear alkane blends

contribute to random mixing. This suggests that non-ideality

will increase as chain length increases, due to the fact that

the concentration of end groups will be lower for longer

chains. This agrees with the experimental observation that

non-ideality increases as the difference in size between

species in a binary mixture increases [67,68]. Such an

analysis raises the question as to what would happen in a

mixture of branched hydrocarbons. Speci®cally, what is the

impact of the degree of branching and the size and position

of branches on the static and dynamic properties of a blend?

It can be argued qualitatively that as the degree of branching

increases (and thus the number of end groups) we can expect

the mixture to behave more ideally. Conversely, as the

length of the branches increases, then the relative fraction

of end groups decreases and greater non-ideality should be

observed. Simulations of the type described here may help

provide answers to these kinds of questions. This issue is

particularly relevant in lubrication, given that lubricant base

stocks are comprised of a large percentage of branched

hydrocarbons.

The local clustering of the short chains can also be seen

from a plot of g(r) between the center of mass of the

different species in the blend (Fig. 6). Hexadecane clearly

shows less structure than hexane, due to its increased

¯exibility and ability to take on more coiled-like conforma-

Fig. 5. Pair correlation functions between the inner and end groups for the

different chains in a mixture of x16�0.4: (a) CH2±CH2 pair correlations;

(b) CH3±CH3 pair correlations.

Fig. 6. Pair correlation functions for the center of mass of the chain

molecules in a mixture of x16�0.4.
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tions. The hexane±hexane PCF has a high, broad peak at a

separation of 4±8 AÊ , while no clear peak is observed for

hexadecane. It would be interesting to use the PCFs to see

how varying the composition impacts the ordering of the

molecules. However, a direct comparison of the PCFs at

different compositions can be misleading because the mix-

tures are at different bulk densities. A more suitable com-

parison can be obtained from a study of the local

compositions, or the local mole fractions in the ¯uid

[71]. To de®ne this for our system, consider a binary mixture

of molecules labeled as type i and type j. The number of

nearest neighbors of component i surrounding another

molecule of type i within a sphere of radius L is given

by the coordination number:

Nii � 4��i

ZL
0

giir
2 dr: (13)

Similarly, the coordination number of component i with

respect to j molecules is:

Nji � 4��j

ZL
0

gjir
2 dr: (14)

Therefore, the local mole fraction of the i component

around a reference central molecule of component i is

given by:

xii � Nii

Nii � Nji

� 4��i

R L

0
giir

2 dr

4��i

R L

0
giir2 dr � 4��j

R L

0
gjir2 dr

� xi

xi � xjGji

; (15)

where

Gji �
4�
R L

0
gjir

2 dr

4�
R L

0
giir2 dr

;

and

xii � xji � 1:

Similar expressions can be written for the xjj local mole

fraction. The factor Gji is a non-random factor indicating

deviations from random mixing. If Gji�1, then xii�xi (i.e.

the mixing is random and there is no preferential clustering

of the molecules). If Gji<1, then xii>xi, and there is a higher

local clustering between molecules of type i. When Gji>1,

then xii<xi, indicating a stronger local attraction between

unlike molecules. The actual value of the xii depends on the

choice of L, which is typically chosen to be the end of the

®rst coordination shell (i.e. the ®rst minimum in the PCF).

In Fig. 7(a) the local hexane composition xii for the

different mixtures is plotted as a function of the distance

from a central hexane molecule i. Similarly, in Fig. 7(b) the

local hexadecane mole fraction xjj is plotted as a function of

a central hexadecane molecule j. At large distances, all

curves approach the bulk mole fractions xi and xj. However,

at the short distances between 5 and 8 AÊ where the ®rst

coordination shell was observed, the local mole fractions

deviate from the bulk values indicating non-random mixing.

For hexane in this region, xii is always higher than the bulk xi

value, indicating that there is a local clustering for the short

chain molecules for all different mixtures studied. On the

other hand, for hexadecane xjj<xj, indicating a stronger local

preference between the unlike n-C6 and n-C16 molecules.

At very short distances (below 4 AÊ ), the local composi-

tion for hexane approaches zero (xii!0), while for hexa-

Fig. 7. Local mole fraction as a function of the distance L from a central

molecule of the same type, at the different x16 bulk compositions studied;

(a) n-hexane local compositions (xii); (b) n-hexadecane local compositions

(xjj).
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decane, xjj!1. This does not indicate that both chains are

surrounded by hexadecane molecules at very short dis-

tances. Rather, this behavior is an artifact caused by the

slightly higher values of the PCF for the C16±C16 center of

mass correlations at very short distances, as shown in Fig. 6.

The short hexane molecules can be thought of as having

more hard core repulsion characteristics when compared to

the ¯oppier hexadecane chains. Therefore, at distances

below 4 AÊ , no hexane molecules are present (see Fig. 6).

On the other hand, the long hexadecane molecules are more

¯exible. Their centers of mass are more delocalized and

exhibit less order. This causes the slightly higher concen-

trations of the centers of mass of C16 at very short distances,

as shown from the center of mass PCF in Fig. 6. When

integrating according to Eq. (15), the short-range local mole

fraction xjj for hexadecane jumps to 1 and xii for hexane is 0.

This simply indicates that the center of mass is not a good

measure of the location of the longer chains. Because of this,

attention should only be paid to the regions of the ®rst

coordination shell and beyond when examining Fig. 7.

3.3. NEMD results

3.3.1. Shear viscosity

In Fig. 8 shear viscosity as a function of shear rate,

computed using NEMD, is shown for pure hexadecane,

pure hexane, and two different mixtures at x16�0.6 and

x16�0.2. All results are listed in Table 5. It is clear that the

¯uid exhibits non-Newtonian behavior at high shear rates

and at all different compositions, as the viscosity drops with

increasing shear rate. This shear thinning behavior has been

observed by many other groups from simulations of pure

alkanes [24±34]. This same behavior is seen with polymeric

materials, albeit at much lower shear rates. At low values of

shear rate _
, Newtonian behavior is recovered in which the

viscosity is independent of shear rate. The plateau value at

low shear rates determines the Newtonian viscosity and

must agree with the value obtained from EMD simulations.

The values of the Newtonian shear viscosity computed using

the Green±Kubo expression from EMD simulations are also

shown on the same plot for comparison. The agreement is

good within the error of the simulations, especially for pure

hexane and the more dilute x16�0.2 blend. For pure hexa-

decane however, the Newtonian plateau value from NEMD

is slightly higher than the EMD value. This indicates that

longer times might be needed for the computation of

viscosity from EMD for pure hexadecane. It is in general

very dif®cult to ®nd the viscosity from the integral of the

stress±stress auto correlation function for long chain mole-

cules. Due to long time tail effects in the correlation

function, extremely long run times are needed. This makes

NEMD simulations more effective and faster for the com-

putation of shear viscosity of long alkanes, as compared

with EMD. However, we should note that we continued the

EMD run up to 33 ns and saw no signi®cant change in the

value of the viscosity when compared to a 23 ns run.

Therefore, the discrepancy might be due to an underestima-

tion of the NEMD error in the viscosity. The error in the

NEMD values of the viscosity were estimated by breaking

the total run into independent blocks of equal lengths. The

error bars shown in Fig. 8 were estimated from the statis-

tical variance of the average viscosity value over the blocks

divided by the square root of the number of blocks. There-

fore, in the calculation of the error of the total run we assume

that the error is inversely proportional to the square root of

the run length, which may underestimate the error of the

total run. Another possible reason for this small discrepancy

is the fact that the EMD values of the viscosity were

computed using the molecular virial expression for the

stress, whereas in NEMD the viscosity has been calculated

from the atomic stress formalism. The molecular viscosity

values from NEMD (not shown) were found to be always

slightly lower than those computed with the atomic virial,

and consequently in better agreement with the EMD values.

Nevertheless, the differences are very small, and not larger

than the statistical errors. The equivalence of the atomic and

molecular stress expression in EMD simulations has been

proven by several authors [23,30,31]. In NEMD the differ-

ence between the values of the stress tensor obtained from

the molecular and atomic expressions is vanishingly small

in the steady state limit for systems that are not subject to

external torques [26]. In this paper, we prefer to report

NEMD values of viscosity using the atomic stress expres-

sion, because the streaming velocity is applied to the atomic

sites [26,31]. On the other hand, in the EMD calculation of

the viscosity using the Green±Kubo equation, the molecular

virial is preferred, because it exhibits less noise.

Fig. 8. Shear viscosity (�) versus shear rate � _
� from NEMD simulations

at four different compositions. The EMD viscosity values at the same

compositions are also shown for comparison. The dashed lines are fits

using Eq. (16). The solid lines have been drawn as a guide to the eye.
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The dashed lines in Fig. 8 are ®ts to the simulated values

using a generalized Cross/Carreau model [72]:

� � �1 � ��0 ÿ �1��1� �� _
����nÿ1�=�: (16)

Although the ®t is good, it cannot capture exactly the

shape of the curves for the mixtures. It is clear that the

viscosity versus shear rate curves for the mixtures have two

`̀ bumps'', as shown by the solid lines which have been

drawn as a guide to the eye. We do not believe these bumps

are artifacts of the simulations for two reasons. Firstly, the

signal-to-noise ratio at these high shear rates is quite high, as

indicated by the small error bars. Secondly, the shear rates

that correspond to the bumps are approximately equal to the

inverse of the rotational relaxation times of each species in

the mixture calculated from the EMD simulations. It is well

known that the critical shear rate _
� where shear thinning

starts to occur is related to the longest relaxation time of the

¯uid [24,25,31]. As discussed previously, the longest relaxa-

tion time for n-alkanes can be assumed to be the rotational

relaxation time � . For example, from the simulations of pure

hexadecane, the logarithm of the critical shear rate where

shear thinning occurs is log _
� � 9:6, whereas from the

EMD simulation of pure hexadecane the inverse of the

rotational relaxation time (see Table 4) gives log(1/

�16)�9.64. In addition, for pure hexane we obtain

log _
� � 11:12 and log(1/�6)�11.18. For the x16�0.6 mix-

ture the ®rst transition bump is observed at log _
�1 � 10:0
and the second bump at log _
�2 � 10:6. The logarithm of the

inverse of the rotational relaxation time �16 for hexadecane

in the same mixture at equilibrium is log(1/�16)�9.82 which

is very close to the value of log _
�1 � 10:0 of the ®rst bump.

Similarly, the rotational relaxation time in the same mixture

for hexane as calculated from EMD gives log(1/�6)�10.9,

which is very close to the log _
�2 � 10:6 where the second

bump occurred. The same applies for the x16�0.2 blend. For

this system log _
�1 � 10:32 and log _
�2 � 10:75 whereas

log(1/�16)�10.05 and log(1/�6)�11.06. Therefore, the

two bumps showing two transitions to shear thinning cor-

respond to two different mechanisms, each related to the

different dynamics of each species.

It is known that shear thinning occurs due to increased

alignment of the chains to the ¯ow ®eld, and this is

directly related to the longest relaxation time � . For shear

rates higher than the inverse of the longest relaxation

time of the system, the chain molecules do not have

enough time to reorient and dissipate the energy due to

shearing. Thus a rearrangement of the ¯uid molecules

must take place and an increased intermolecular alignment

occurs in order to relieve stress. When this occurs, the

¯uid has been moved into the non-linear viscoelastic regime

(or non-Newtonian or pseudoplastic regime). The new

structural con®guration of the ¯uid results in lower viscos-

ity, and the alignment caused by the applied shear results in

a more ellipsoidal orientational distribution function of the

¯uid.

In the case of the blend two distinct critical shear rates are

observed. The ®rst corresponds to the start of shear-thinning

and alignment of the longer chains described by the larger

relaxation time. The short chains exhibit faster dynamics

which are characterized by smaller relaxation times. They

can be considered more mobile, therefore they can still

respond fast enough to the external ®eld. It can be assumed

that they are still in the Newtonian or linear viscoelastic

regime and able to dissipate energy due to viscous relaxa-

tion. Therefore, the main contribution of the ®rst shear

thinning region comes from the long hexadecane chains.

In order for the shorter hexane chains to start contributing to

the shear thinning, shear rates higher than the inverse of

their relaxation time � in the mixture are required. Thus, for

_
 > 1=�6 a second shear thinning transition occurs, and the

short hexane chains start to align.

The ®ts shown in Fig. 8 cannot capture this spectrum.

Another widely used model is the so-called Gleissle's rule

[73], which relates the non-linear viscoelastic regime to the

linear viscoelastic spectrum. In this approach, it is assumed

that the non-linear behavior can be represented as a series of

exponential terms resulting from applying the generalized

Maxwell model of linear viscoelasticity to the non-linear

viscoelastic regime:

�ss �
Zt�1= _


0

G�t� _
 dt �
X

i

G0i�i _
�1ÿ exp�ÿ1= _
�i��:

(17)

This model, as well as a similar `̀ Cox±Merz'' rule [74],

also failed to capture the two shear thinning transition

`̀ bumps'' observed in Fig. 8. This is due to the fact that

models of this type are empirical and used mainly for

polymeric ¯uids. Polymers are long molecules with a broad

spectrum of relaxation times and a high degree of poly-

dispersity. In a polymer blend, these models predict a

broadening of the relaxation spectrum and a broadening

of the shear thinning transition region [72,75]. However, in

the case of this clean binary mixture of the two relatively

short n-alkanes with relaxation times that differ by an order

of magnitude, two distinct transitions to shear thinning are

observed. We believe this is the ®rst time this has been

observed in a simulation. It would be interesting to see if

such behavior could be reproduced in the laboratory.

3.3.2. Normal stress effects

In Fig. 9 a plot of the ®rst normal stress coef®cient 	1

versus _
 is given. The ®rst normal stress coef®cient is

de®ned as

	1 � Pzz ÿ Pxx

_
2
; (18)

where 	1 is a measure of the difference in the normal

stresses observed in non-Newtonian ¯uids. An increase of

the normal stresses suggests a tendency of the ¯uid to
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deform in the normal directions (known as shear dilatancy)

and in particular in the z-direction which is perpendicular to

the shearing planes xy. Rheological studies of the non-linear

viscoelasticity of polymers under simple Couette shear ¯ow

have shown that not far from the linear Newtonian regime

Pzz±Pxx is proportional to _
2 [72] and thus 	1 is constant. At

higher shear rates 	1 decreases. Exactly the same trend is

observed in our simulations as shown in Fig. 9. These

results are indicative of non-Newtonian behavior and sug-

gest that the ¯uid is clearly in the non-linear viscoelastic

regime. It is also clear that higher normal differences are

obtained as x16 increases. Calculations such as these for

various mixtures could help provide insight into ways of

`̀ tuning'' the normal stress behavior of a particular ¯uid by

changing the composition of the mixture.

3.3.3. Shear alignment and structural order

To further examine the shear thinning behavior, we

investigated the structural order and degree of alignment

of the ¯uid under shear. We have used the order tensor

de®ned as [27,31]:

S � 3

2

1

N

XN

i�1

e1ie1i ÿ 1

3
I

� �* +
; (19)

where, e1i is the unit vector along the end to end vector

(longest axis) of the molecule i, and I is the unit tensor. The

order tensor is a measure of the anisotropy of the average

inertia tensor of a ¯exible molecule caused by the shear

®eld. The largest eigenvalue � of the order tensor is called

the order parameter, and the eigenvector corresponding to

the largest eigenvalue � has the same direction as the longest

semi-axis of an inertially equivalent ellipsoid to the ¯uid.

The value of � can vary from zero for randomly oriented

(disordered) ¯uid at equilibrium, to unity for perfect orien-

tational alignment.

In Fig. 10, � is plotted as a function of the shear rate for

each species in the mixtures, as well as for the pure

components. The general trend is that � increases with

shear rate indicating an increased orientational ordering

and more pronounced alignment of the chains at higher

shear rates. In addition, it seems that the order parameter �
rises towards a plateau value, which might correspond to a

saturation effect in the alignment and the beginning of a

second Newtonian regime at very high shear rates. By

examining the order parameter for each species in

Fig. 10, it is seen that the hexadecane chains always have

higher values of � than the short hexane chains (i.e. they

exhibit a higher degree of alignment). What's more inter-

esting is that the order parameter of the longer C16 chains

rises more rapidly (i.e. at lower shear rates) than that of the

shorter C6 chains. Finally, increasing the concentration of

hexadecane, both the order parameter � and the shear rate at

which signi®cant order takes place decrease. These results

show that the two different species clearly exhibit different

degrees of alignment with respect to the ¯ow ®eld. The

longer chains start ordering at smaller shear rates, and the

critical shear rate at which alignment occurs is also affected

by the composition of the mixture. This supports the earlier

conclusion as to the molecular origin of the `̀ bumps'' in

Fig. 8.

To examine alignment further, an alignment angle can be

de®ned as the angle between the principal eigenvector with

Fig. 9. First normal stress coefficients (	1) versus shear rate � _
� computed

from NEMD simulations at four different compositions. The error bars,

�	1
have been computed from the expression �	1

�
��������������������������������
��2

Pzz
� �2

Pxx
�= _
2

q
using the standard deviations of the Pzz and Pxx average values from the

simulations.

Fig. 10. Order parameter (�) for each species versus shear rate � _
�,
computed from NEMD simulations at four different mixture compositions.
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the axis of the shear¯ow [27,31]. Values of the alignment (or

`̀ birefringence'') angle are reported in (Table 5). Not sur-

prisingly, these results show that the long chains align better

with the ¯ow. At high shear rates, the long chains align with

an angle of about 9±108, whereas the short chains with an

angle of 20±248. At low shear rates (Newtonian regime) the

alignment angles reach the value of 458, in agreement with

the predictions of linear viscoelasticity theories [27,31].

3.4. Conclusions

We have studied the dynamic and structural properties of

a binary mixture of n-hexadecane and n-hexane at different

compositions. We have investigated the microscopic struc-

ture of the ¯uid under equilibrium conditions and under

planar Couette ¯ow, using both EMD and NEMD simula-

tions and the TraPPE united atom force®eld. Dynamic

properties such as the viscosity, self-diffusivity and

rotational relaxation times were computed and found to

be in fair to good agreement with experiment. In all cases,

the dynamics of the molecules in the simulations were

greater than those observed experimentally. Nevertheless,

the simulations did capture the experimental trends in

viscosity as a function of composition and are expected

to provide an accurate qualitative picture of the binary ¯uid

properties.

Table 5

Shear viscosity (�) values from NEMD simulations at different shear rates � _
� and hexadecane mole fractions (x16)

log _
 (sÿ1) x16�0.0 x16�0.2 x16�0.6 x16�1.0

� (mPa s) trun(ps) � (mPa s) trun (ps) � (mPa s) trun (ps) � (mPa s) trun (ps)

9.12 1.497�0.150 5600

9.25 1.507�0.073 5000

9.50 0.382�0.027 3500 0.780�0.085 3000 1.318�0.067 3500

9.75 0.355�0.025 3000 0.728�0.046 2000 1.162�0.059 2200

9.87 0.371�0.024 2600

10.00 0.370�0.011 2000 0.737�0.030 1200 0.934�0.036 1500

10.12 0.363�0.008 1600 0.647�0.028 750

10.25 0.374�0.010 1200 0.542�0.016 600 0.766�0.024 900

10.37 0.353�0.007 900 0.510�0.016 600

10.50 0.206�0.013 500 0.306�0.007 700 0.486�0.009 400 0.589�0.018 650

10.62 0.309�0.005 500 0.462�0.013 400

10.75 0.211�0.005 350 0.307�0.006 400 0.399�0.009 400 0.468�0.013 400

11.00 0.201�0.004 250 0.255�0.004 300 0.320�0.004 300 0.367�0.004 300

11.25 0.192�0.002 200 0.230�0.003 300 0.261�0.006 300

11.50 0.173�0.001 150 0.189�0.002 200 0.217�0.005 200 0.243�0.002 250

11.75 0.153�0.002 150

12.00 0.137�0.001 150 0.142�0.001 200 0.154�0.001 200 0.167�0.001 250

The statistical uncertainties reported have been obtained from averages of different blocks of equal length.

Table 6

Alignment angles for each species at different shear rates _
 and different mixture compositions

log _
 (sÿ1) x16�0.0 x16�0.2 x16�0.6 x16�1.0

Hexane Hexadecane Hexane Hexadecane Hexane Hexadecane

9.25 40.68
9.50 46.88 39.78 40.58 35.68 30.48
9.75 40.18 39.18 25.68 34.68 28.58
9.87 41.58 46.58

10.00 34.68 38.58 29.18 34.98 20.88
10.12 32.08 38.18
10.25 26.98 38.08 16.98 27.78 17.08
10.37 24.58 35.08
10.50 39.68 27.38 37.28 16.98 25.18 14.68
10.62 19.38 33.38
10.75 41.08 21.28 35.58 16.28 26.58 14.18
11.00 40.08 16.88 30.58 13.18 24.98 12.58
11.25 34.38 14.38 29.98 12.08 23.08
11.50 30.38 12.38 27.08 11.98 22.38 11.58
11.75 26.28
12.00 23.88 9.68 22.08 9.18 20.38 9.38
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Using the intermolecular pair correlation functions, the

microscopic structure of the ¯uid at equilibrium was stu-

died. It was observed that the system mixes non-ideally due

to a non-random mixing of the CH2 groups of the chains

between the different species. A better packing and a

preferential structure for the inner groups of the smaller

chains was also observed, which results in a local clustering

of the hexane molecules in the mixture.

NEMD simulations have also been used to compute the

viscosity of the mixtures and study the non-linear visco-

elastic behavior of the alkane blend under planar Couette

¯ow. The system was shown to shear-thin and exhibit non-

Newtonian behavior at high shear rates. However, each

species in the mixture contributes differently to the shear-

thinning, due to a different degree of alignment and orienta-

tional ordering of the chains to the ¯ow. The longer chains

align more readily and shear thin at smaller shear rates,

giving rise to a non-linear viscoelastic spectrum that cannot

be captured easily by any empirical models. Two `̀ bumps''

were observed in the shear-thinning spectrum, correspond-

ing to two shear-thinning transitions at two distinct critical

shear rates which are related to the rotational relaxation

times of each species in the mixture.

Finally, it was observed that shorter simulation times are

needed to compute the viscosity with NEMD than with

EMD (Table 6). Combined with the fact that the NEMD

simulations can be more easily parallelized by running

simulations at different shear rates on different processors,

we believe that NEMD is more ef®cient for the prediction of

viscosity, especially for long chain molecules.

In the future we would like to extend this work to examine

more complex molecules, such as branched hydrocarbons,

longer chain alkane molecules and ®nally polymers, in an

effort to understand the microscopic mechanisms of real

lubricant and additive systems.
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Appendix A

A.1 Equations of motion for NVT±Sllod dynamics

The Sllod equations of motion combined with the NoseÂ±

Hoover thermostat for constant temperature simulations

used in this work are [59,76]:

_ri � vi � i _
rzi; (A.1)

_vi � Fi�ri�
mi

ÿ v�vi ÿ i _
vzi; (A.2)

_� � v�; (A.3)

_v� � G��vi� � 1

Q

X
i

miv
2
i ÿ gkBT

" #
; (A.4)

where ri and vi are the position and peculiar velocity vectors

of particle i, Fi the force on particle i, mi the mass, _
 the

shear rate, � and v� is the position and velocity of the

thermostat and g the degrees of freedom of the system

(g�3N). Q is the thermostat's mass and is given from

Q��2gkBT where � is the NoseÂ thermostat time constant.

Note that by setting _
 � 0, one can recover the EMD NoseÂ±

Hoover equations of motion.

Appendix B

B.1 Time-reversible reference system propagator algorithm

(rRESPA) for NVT±Sllod dynamics

Here, we present brie¯y the scheme used in this work for

a multiple time step algorithm of the NVT±Sllod equations

of motion. The methodology is based on the work of

[60,76], and the ®nal algorithm is very similar to the ones

that have been proposed and used by other groups [29,30,

32]. The method is based on a separation of the Liouville

operator iL into terms that prescribe different motion modes

of the atoms in the system, such as fast modes due to

vibrational forces in the molecule, or slow modes due to

soft long range forces. These different modes are then

integrated with different time steps. Here we present the

decomposition of the total Liouville operator used in this

work. The reader should refer to [60,76] for more details on

the methods and the theory behind the formulation of time-

reversible reference system propagator algorithms.

The Liouville operator for the NVT±Sllod equations of

motion (see Appendix A is:

iL � _r � @
@r
� _v � @

@v
� _� � @

@�
� _v� � @

@v�
; (B.1)

iL � v � @
@r
� _
rz � @

@rx

� F

m

@

@v
ÿ v�v � @

@v
ÿ _
vz � @

@vx

� v� � @
@�
� G��v� � @

@v�
: (B.2)

We decompose the Liouville operator into the three propa-

gators iL1, iL2 and iL3:

iL1 � v � @
@r
� _
rz � @

@rx

� Fref

m
� @
@v
ÿ _
vz � @

@vx

; (B.3)

iL2 � Fÿ Fref

m
� @
@v
; (B.4)

iL3 � ÿv�v � @
@v
� v� � @

@�
� G��v� � @

@v�
: (B.5)
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The iL1 operator is the reference operator and includes the

shearing motion and the intramolecular bonded forces

(bond-stretching, bond-angle bending and torsional rota-

tion) into the Fref term (fast modes). The iL2 operator

includes the non-bonded LJ forces (intermolecular and

intramolecular) which are considered as soft forces

(slow modes). The iL3 operator includes the thermostat

terms. The reference operator that prescribes the fast motion

modes can then be applied with a smaller time step, as

shown below.

Using Trotter factorization, the evolution propagator can

be written as:

exp�iL�t� � exp iL3
�t

2

� �
exp iL2

�t

2

� �
exp�iL1�t�

� exp iL2
�t

2

� �
exp iL3

�t

2

� �
; (B.6)

exp�iL�t� � exp iL3
�t

2

� �
exp iL2

�t

2

� �
�exp�iL1dt��n

� exp iL2
�t

2

� �
exp iL3

�t

2

� �
; (B.7)

where the reference propagator exp(iL1dt) is integrated

with the smaller time step dt�(�t)/n, n times. We further

Trotter factorize the individual propagators exp(iL1dt),

exp(iL2(�t/2)) and exp(iL3(�t/2)) to get:

exp�iL1dt� � exp
dt

2

Fref

m
� @
@v

� �
exp ÿ dt

2
_
vz � @

@vx

� �
� exp

@t

2
_
rz � @

@rx

� �
exp dtv � @

@r

� �
� exp

dt

2
_
rz � @

@rx

� �
exp ÿ �t

2
_
vz � @

@vx

� �
� exp

�t

2

Fref

m
� @
@v

� �
; (B.8)

exp iL2
�t

2

� �
� exp

�t

2

Fÿ Fref

m
� @
@v

� �
(B.9)

exp iL3
�t

2

� �
� exp

�t

4
G��v� � @

@v�

� �
exp ÿ�t

2
v�v � @

@v

� �
�exp

�t

2
v� � @

@�

� �
�exp

�t

4
G��v� � @

@v�

� �
:

(B.10)

Substituting the above propagators into Eq. (B.7) we

get the total propagator for the NVT±Sllod equations of

motion.

The factorization scheme in Eq. (B.7) is called XO-

RESPA (extended system outside-reference system propa-

gator algorithm), because the NoseÂ±Hoover propagator

exp(iL3(�t/2)) is applied outside the reference system. If

the motion prescribed by the exp(iL3(�t/2)) occurs on the

same timescale as the motion generated by the reference

force, then a useful RESPA must include the application of

this operator for the small time step dt [76]:

exp�iL�t� � exp iL3
dt

2

� �
exp iL2

�t

2

� �
exp ÿiL3

dt

2

� �
� exp iL3

dt

2

� �
exp�iL1dt� exp iL3

dt

2

� �� �n

� exp ÿiL3
dt

2

� �
exp iL2

�t

2

� �
exp iL3

dt

2

� �
;

(B.11)

or

exp�iL�t� � exp iL3
dt

2

� �
exp iL2

�t

2

� �
exp�iL1dt� iL3

dt

2

� �
� exp iL3

dt

2

� �
exp�iL1dt� exp iL3

dt

2

� �� �nÿ2

� exp iL3
dt

2

� �
exp�iL1dt� exp iL2

�t

2

� �
� exp iL3

dt

2

� �
: (B.12)

The resulting integrator is named XI-RESPA (extended

system inside-reference propagator algorithm), and is con-

structed so that when n�1 the original extended system

algorithm Eq. (B.6) is recovered. In this work, all the results

reported are from runs using the XI-RESPA version of the

algorithm. The ®nal solution (expressed in positions and

momenta) is generated by applying serially the above evolu-

tion propagators to the initial state C(0)�{r(0),p(0)}, in

the same way, as shown in [60,76]. The application of the

total evolution propagator is translated very easily into a

program code.

Nomenclature

a0, a1, a2, a3 torsional potential energy function para-

meters (J)

D self-diffusion coefficient (m2/s)

e1 unit vector of the longest axis of the

molecule

Fi force vector on particle i (N)

Fref forces that act on the reference system (N)

g system's degrees of freedom

g(r) pair correlation function

G0 plateau modulus (MPa)

G12 non-ideal mixing empirical parameter in

Eq. (10)

Gji non-random factor

G(t) shear modulus (MPa)

I unit tensor

kb bond stretching force constant (J/AÊ 2)

kB Boltzmann constant (J/K)

k� bond-angle bending force constant (J/rad2)

L coordination shell size (AÊ )

mi mass of particle i (kg)

L.I. Kioupis, E.J. Maginn / Chemical Engineering Journal 74 (1999) 129±146 143



n exponent in the generalized Cross/Carreau

equation

n number of small time steps

N number of molecules

Nji number of molecules of component j

around a molecule of component i

pi momentum vector of particle i (kg m/s)

P pressure (MPa)

P pressure (or stress) tensor (MPa)

P�� component of pressure tensor, where �, �
range over x, y, z (MPa)

Pos symmetrized traceless pressure tensor

(MPa)

Q thermostat's mass (J/s2)

r separation distance (AÊ )

r, r0 bond length and equilibrium bond length

(AÊ )

ri position vector of particle i (AÊ )

R gas constant (kJ molÿ1 Kÿ1)

S order tensor

trun simulation time length (ns)

T temperature (K)

vi velocity vector of particle i (m/s)

v� thermostat's velocity (sÿ1)

V volume of the simulation box (AÊ 3)

Vb bond stretching potential energy (J)

VLJ non-bonded (Lennard-Jones) potential en-

ergy (J)

V� bond-angle bending potential energy (J)

V� torsional potential energy (J)

x, y, z Cartesian coordinates

xi mole fraction of component i

xji local mole fraction of component j around

component i

Greek letters

� exponent in the generalized Cross/Carreau

equation

� Kohlraush±Williams±Watt equation para-

meter

_
 shear rate (sÿ1)

_
� critical shear rate marking transition to

shear-thinning behavior (sÿ1)

C(t) {r(t), p(t)}, phase space (6N dimensional

set of positions and momenta)

dt, �t small and large time step (fs)

�~V
E

excess molar volume of mixing (cm3/mol)

" Lennard-Jones energy parameter (J)

� shear viscosity (mPa s)

�0, �1 asymptotic viscosity at low and high shear

rates respectively (mPa s)

�, �0 bond angle and equilibrium bond angle (rad)

� order parameter

� parameter in the generalized Cross/Carreau

equation (s)

�i viscoelastic relaxation time (s)

� thermostat's position

� density (g/cm3)

� Lennard-Jones size parameter (AÊ )

� statistical standard deviation

� NoseÂ thermostat time constant (s)

� rotational or reorientational relaxation

time (s)

� torsion angle (rad)

	1 first normal stress coefficient (Pa s2)

Special symbols

ru velocity gradient (sÿ1)

iL Louiville operator

References

[1] G.W. Stachowiak, A.W. Batchelor, Engineering Tribology, Elsevier,

Amsterdam, 1993.

[2] J.N. Israelachvili, Intermolecular and Surface Forces, 2nd ed.,

Academic Press, London, 1992.

[3] H. Yoshizawa, J.N. Israelachvili, Fundamental mechanisms of

interfacial friction. 2. Stick-slip friction of spherical and chain

molecules, J. Phys. Chem. 97 (1993) 11300±11313.

[4] J. Van Alsten, S. Granick, Shear rheology in a confined geometry ±

polysiloxane melts, Macromolecules 23 (1990) 4856±4862.

[5] S. Granick, Motions and relaxations of confined liquids, Science 253

(1991) 1374±1379.

[6] E. Watts, J. Krim, A. Widom, Experimental observation of interfacial

slippage at the boundary of molecularly thin films with gold

substrates, Phys. Rev. B 41 (1990) 3466±3472.

[7] B. Bhushan (Ed), Handbook of Micro/Nanotribology, CRC Press,

Boca Raton, 1995.

[8] J. Magda, M. Tirrell, H.T. Davis, Molecular dynamics of narrow,

liquid-filled pores, J. Chem. Phys. 83 (1985) 1888±1901.

[9] M. Schoen, J.H. Cushman, D. Diestler, C.L. Ryhkerd, Fluids in

micropores. II. Self-diffusion in a simple classical fluid in a slit pore,

J. Chem. Phys. 88 (1988) 1394±1406.

[10] P.A. Thompson, M.O. Robbins, Shear flow near solids: epitaxial order

and flow boundary conditions, Phys. Rev. A 41 (1990) 6830±6837.

[11] Y. Wang, K. Hill, J.G. Harris, Comparison of branched and linear

octanes in the surface force apparatus. A molecular dynamics study,

Langmuir 9 (1993) 1983±1985.

[12] Y. Wang, K. Hill, J.G. Harris, Confined thin films of a linear and

branched octane. A comparison of the structure and solvation forces

using molecular dynamics simulations, J. Chem. Phys. 100 (1994)

3276±3285.

[13] P. Padilla, Chemical structure effects on the equilibrium and under

shear properties of thin films in confined geometries: A molecular

dynamics simulation study, J. Chem. Phys. 103 (1995) 2157±2168.

[14] M. Vacatello, D.Y. Yoon, B.C. Laskowski, Molecular arrangements

and conformations of liquid n-tridecane chains confined between

two hard walls, J. Chem. Phys. 93 (1990) 779±786.

[15] I. Bitsanis, G. Hadziioannou, Molecular dynamics simulations of the

structure and dynamics of confined polymer melts, J. Chem. Phys. 92

(1990) 3827±3847.

[16] M. Lupkowski, F. van Swol, Ultrathin films undershear, J. Chem.

Phys. 95 (1991) 1995±1998.

[17] S.Y. Liem, D. Brown, J.H.R. Clarke, Investigation of the homo-

geneous-shear nonequilibrium-molecular-dynamics method, Phys.

Rev. A 45 (1992) 3706±3713.

144 L.I. Kioupis, E.J. Maginn / Chemical Engineering Journal 74 (1999) 129±146



[18] P. Padilla, S. Toxvaerd, Simulating shear flow, J. Chem. Phys. 104

(1996) 5956±5963.

[19] P. Padilla, S. Toxvaerd, Fluid alkanes in confined geometries, J.

Chem. Phys. 101 (1994) 1490±1502.

[20] J. Gao, W.D. Luedtke, U. Landman, Nano-elasto hydrodynamics:

structure, dynamics, and flow in nonuniform lubricated junctions,

Science 270 (1995) 605±608.

[21] B. Bhushan, J.N. Israelachvili, U. Landman, Nanotribology: friction,

wear, and lubrication at the atomic scale, Nature 374 (1995) 607±

616.

[22] W.J. Ma, L.K. Iyer, S. Vishveshwara, J. Koplik, J.R. Banavar,

Molecular-dynamics studies of systems of confined dumbbell

molecules, Phys. Rev. E 51 (1995) 441±453.

[23] M. Mondello, G.S. Grest, Viscosity calculations of n-alkanes by

equilibrium molecular dynamics, J. Chem. Phys. 106 (1997) 9327±

9336.

[24] A. Berker, S. Chynoweth, U.C. Klomp, Y. Michopoulos, Non-

equilibrium molecular dynamics (NEMD) simulations and the

rheological properties of liquid n-hexadecane, J. Chem. Soc.,

Faraday Trans. 88 (1992) 1719±1725.

[25] S. Chynoweth, R.C. Coy, Y. Michopoulos, Simulated non-Newtonian

lubricant behavior under extreme conditions, J. Engr. Tribology 209

(1995) 243±254.

[26] R. Edberg, G.P. Morris, D.J. Evans, Rheology of n-alkanes by

nonequilibrium molecular dynamics, J. Chem. Phys. 86 (1987)

4555±4570.

[27] P.J. Daivis, D.J. Evans, G.P. Morris, Computer simulation study of

the comparative rheology of branched and linear alkanes, J. Chem.

Phys. 97 (1992) 616±627.

[28] P.J. Daivis, D.J. Evans, Comparison of constant pressure and

constant volume non-equilibrium simulations of sheared model

decane, J. Chem. Phys. 100 (1994) 541±547.

[29] C.J. Mundy, J.I. Siepmann, M.L. Klein, Decane under shear: A

molecular dynamics study using reversible NVT±SLLOD and NPT±

SLLOD algorithms, J. Chem. Phys. 103 (1995) 10192±10200.

[30] S.T. Cui, P.T. Cummings, H.D. Cochran, Multiple time step non-

equilibrium molecular dynamics simulation of the rheological

properties of liquid n-decane, J. Chem. Phys. 104 (1996) 255±262.

[31] S.T. Cui, S.A. Gupta, P.T. Cummings, H.D. Cochran, Molecular

dynamics simulations of the rheology of normal decane, hexadecane,

and tetracosane, J. Chem. Phys. 105 (1996) 1214±1220.

[32] Z. Xu, J. de Pablo, S. Kim, Transport properties of polymer melts

from non-equilibrium molecular dynamics, J. Chem. Phys. 102

(1995) 5836±5844.

[33] R. Khare, J. de Pablo, A. Yethiraj, Rheological, thermodynamic, and

structural studies of linear and branched alkanes undershear, J.

Chem. Phys. 107 (1997) 6956±6964.

[34] M. Lahtela, M. Linnolahti, T.A. Pakkanen, R.L. Rowley, Computer

simulations of branched alkanes: the effect of side chain and its

position on rheological behavior, J. Chem. Phys. 108 (1998) 2626±

2630.

[35] P. Padilla, S. Toxvaerd, Self-diffusion in n-alkane fluid models, J.

Chem. Phys. 94 (1991) 5650±5654.

[36] G.D. Smith, D.Y. Yoon, Equilibrium and dynamic properties of

polymethylene melts from molecular dynamics simulations I. n-

Tridecane, J. Chem. Phys. 100 (1994) 649±658.

[37] M. Mondello, G.S. Grest, Molecular dynamics of linear and

branched alkanes, J. Chem. Phys. 103 (1995) 7156±7165.

[38] S. Murad, The viscosity of dense fluid mixtures: Mixing rules

reexamined using nonequilibrium molecular dynamics, AIChE J. 32

(1986) 513±516.

[39] S.H. Lee, P.T. Cummings, Shear viscosity of model mixtures by

nonequilibrium molecular dynamics I. Argon±krypton mixtures, J.

Chem. Phys. 99 (1993) 3919±3925.

[40] S.H. Lee, P.T. Cummings, Shear viscosity of model mixtures by

nonequilibrium molecular dynamics II. Effect of dipolar interactions,

J. Chem. Phys. 105 (1996) 2044±2055.

[41] D.M. Heyes, Molecular dynamics simulations of liquid binary

mixtures: partial properties of mixing and transport coefficients, J.

Chem. Phys. 96 (1992) 2217±2227.

[42] D.R. Wheeler, R.L. Rowley, Shear viscosity of polar liquid mixtures

via non-equilibrium molecular dynamics: water, methanol and

acetone, Mol. Phys. 94 (1998) 555±564.

[43] A. Kopf, B. DuÈnweg, W. Paul, Dynamics of polymer `̀ isotope''

mixtures: molecular dynamics simulation and Rouse model analysis,

J. Chem. Phys. 107 (1997) 6945±6955.

[44] M.L. Gee, P.M. McGuiggan, J.N. Israelachvili, A.M. Homola, Liquid

to solid like transitions of molecularly thin films under shear, J.

Chem. Phys. 93 (1990) 1895±1906.

[45] U. Landman, W.D. Luedtke, J. Gao, Atomic-scale issues in

tribology: interfacial junctions and nano-elasto hydrodynamics,

Langmuir 12 (1996) 4514±4528.

[46] J.C. Dijt, M.A.C. Stuart, G.J. Fleer, Competitive adsorption kinetics

of polymers differing in length only, Macromolecules 27 (1994)

3219±3228.

[47] T.K. Xia, U. Landman, Molecular dynamics of adsorption and

segregation from an alkane mixture, Science 261 (1993) 1310±1312.

[48] U. Landman, W.D. Luedtke, J. Ouyang, T.K. Xia, Nanotribology and

the stability of nanostructures, Jpn. J. Appl. Phys. 32 (1993) 1444±1462.

[49] A. Yethiraj, Monte-Carlo simulation of confined semiflexible

polymer melts, J. Chem. Phys. 101 (1994) 2489±2497.

[50] H.W. Hu, G.A. Carson, S. Granick, Relaxation time of confined

liquids under shear, Phys. Rev. Lett. 66 (1991) 2758±2761.

[51] P.A. Thompson, G.S. Grest, M.O. Robbins, Phase transitions and

universal dynamics in confined films, Phys. Rev. Lett. 68 (1992)

3448±3451.

[52] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids,

Clarendon Press, Oxford, 1987.

[53] D.J. Evans, G.P. Morris, Statistical Mechanics of Nonequilibrium

Liquids, Academic Press, London, 1990.

[54] P.T. Cummings, D.J. Evans, Nonequilibrium molecular dynamics

approaches to transport properties and non-Newtonian fluid

rheology, Ind. Eng. Chem. Res. 31 (1992) 1237±1252.

[55] S. NoseÂ, Constant temperature molecular dynamics methods, Progr.

Theor. Phys. Suppl. 103 (1991) 1±46.

[56] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena,

Wiley, New York, 1960.

[57] W.G. Hoover, Non-equilibrium molecular dynamics, Ann. Rev. Phys.

Chem 34 (1983) 103±127.

[58] A.W. Lees, S.F. Edwards, The computer study of transport processes

under extreme conditions, J. Phys. C 5 (1972) 1921±1929.

[59] G.J. Martyna, M.L. Klein, M. Tuckerman, NoseÂ±Hoover chains: the

canonical ensemble via continuous dynamics, J. Chem. Phys. 97

(1992) 2635±2643.

[60] M. Tuckerman, B.J. Berne, G.J. Martyna, Reversible multiple

timescale molecular dynamics, J. Chem. Phys. 97 (1992) 1990±2001.

[61] J.I. Siepmann, M.G. Martin, C.J. Mundy, M.L. Klein, Intermolecular

potentials for branched alkanes and the vapour-liquid phase

equilibria of n-heptane, 2-methylhexane, and 3-ethylpentane, Mol.

Phys. 90 (1997) 687±693.

[62] M.G. Martin, J.I. Siepmann, Transferable potentials for phase

equilibria. 1. United-atom description of n-alkanes, J. Phys. Chem.

B 102 (1998) 2569±2577.

[63] J.I. Siepmann, S. Karaborni, B. Smit, Simulating the critical behavior

of complex fluids, Nature 365 (1993) 330±332.

[64] B. Smit, S. Karaborni, J.I. Siepmann, Computer simulations of

vapor-liquid phase equilibria of n-alkanes, J. Chem. Phys. 102

(1995) 2126±2140.

[65] B. Smit, S. Karaborni, J.I. Siepmann, Erratum: computer simulations

of vapor-liquid phase equilibria of n-alkanes [J. Chem. Phys. 102

(1995) 2126], J. Chem. Phys. 109(1995) (1998) 352.

[66] W.L. Jorgensen, J.D. Madura, C.J. Swenson, Optimized intermole-

cular potential functions for liquid hydrocarbons, J. Am. Chem. Soc.

106 (1984) 6638±6646.

L.I. Kioupis, E.J. Maginn / Chemical Engineering Journal 74 (1999) 129±146 145



[67] A. Aucejo, M.C. Burguet, R. Munoz, J.L. Marques, Densities,

viscosities, and refractive indices of some n-alkane binary liquid

systems at 298.15 K, J. Chem. Eng. Data 40 (1995) 141±147.

[68] E.L. Heric, J.G. Brewer, Viscosity of some binary liquid non-

electrolyte mixtures, J. Chem. Eng. Data 12 (1967) 574±583.

[69] H. Ertl, F.A.L. Dullen, Self-diffusion and viscosity of some liquids as

a function of temperature, AIChE J. 19 (1973) 1215±1223.

[70] J.H. Dymond, K.R. Harris, The temperature and density dependence

of the self-diffusion coefficient of n-hexadecane, Mol. Phys. 75

(1992) 461±466.

[71] R.L. Rowley, Statistical Mechanics for Thermophysical Property

Calculations, PTR, Prentice-Hall, New York, Englewood Cliffs, NJ,

1994.

[72] J.M. Dealy, K.F. Wissbrun, Melt Rheology and its Role in Plastics

Processing, Van Nostrand Reinhold, New York, 1990.

[73] W. Gleissle, Two simple time-shear rate relations combining

viscosity and first normal stress coefficient in the linear and non-

linear flow range, in: G. Astarita, G. Marucci, L. Nicolais (Eds.),

Rheology (Proceedings of the Eighth International Congress on

Rheology) vol. 2, Plenum Press, New York, 1980, p. 457.

[74] W.P. Cox, E.H. Merz, Correlation of dynamic and steady-state

viscosities, J. Polym. Sci. 28 (1958) 619±622.

[75] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric

Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1977.

[76] G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Explicit

reversible integrators for extended systems dynamics, Mol. Phys. 87

(1996) 1117±1157.

146 L.I. Kioupis, E.J. Maginn / Chemical Engineering Journal 74 (1999) 129±146


